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Models for Association in Bivariate
Survival Data
by Yoshinori Fujii*

This paper reviews dependence models for bivariate survival data, classifying them into the four groups:
the shock model, the Freund model, the Clayton model, and the mixture model. The paper then concentrates
on the mixture model, discussing the testing problem for the equality of marginal distributions under the
Weibull type baseline hazard assumption. The new test proposed recently by Fujii is introduced, and its
characteristic is studied with respect to the test proposed by Nayak and the sign test by simulation study.

Introduction
We often face multivariate survival data such as fam-

ilial data, matched pairs, and different components of a
system. When we study such data, it is important to
construct the model that represents dependence. Sev-
eral models for multivariate survival data have been
proposed. To begin with, we briefly review the four
models: the shock model, the Freund model, the Clayton
model, and the mixture model; these models have been
proposed for different situations. We clarify the type of
data to which each model can be applied.
We next consider a testing problem in the mixture

model that may be used in more situations than the
other models. Under the constant baseline hazard as-
sumption, Salvia and Bollinger (1), Cantor and Knapp
(2), and Nayak (3) proposed the test for the equality of
marginal distributions. To relax the constant hazard
assumption, which is too strong in practice, Fujii (4)
developed a test based on Weibull type baseline hazard
functions. We review the test and compare the powers
of the test with the test proposed by Nayak (3) and also
with the sign test by simulation study.

Review of Bivariate Survival Models
In this section we review four bivariate survival

models: the shock model, the Freund model, the Clayton
model, and the mixture model. The shock model and
the Freund model were proposed for the bivariate ex-
tensions of exponential distribution. These models are
often used in industrial life testing and can be also ex-
tended to various bivariate survival models. On the
other hand, the Clayton model and the mixture model
are semiparametric models such that the marginal dis-
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tributions may be unknown. We briefly review these
four models below.

The Shock Model
Consider three events called shock, Si, S2, and S3,

which are independent Poisson process Zl(t,X ,), Z2(t,X2)
and Z12(t,X12), respectively. If S1(S2) occurs, individual
1 (individual 2) fails. IfS3 occurs, both individuals 1 and
2 fail. Then it follows that a paired failure times (X,Y)
ofindividuals 1 and 2 has the following survival function:

F(s,t) P IX>s,Y>t}
= exp[ - Xls - X2t - X12max(s,t)]

Marshall and Olkin (5) introduced this idea for a version
of bivariate exponential family. We denote this distri-
bution by SBE(X1,X2,X12). This distribution has the fol-
lowing properties:

a) The marginal distributions of bothX and Y follow
exponential distribution.

b) Lack of memory property
P{X> Sl + t, Y>s2 + t X> t, Y> t}

= P{ X > Sl, Y > S2}.
c) Min(X,Y) follows exponential distribution.
d) This distribution is not absolutely continuous with

respect to Lebesgue measure because the set {X
= Y}, which is Lebesgue measure 0, has positive
probability.

e) If (X,Y) follows SBE(Xj,X2,X12), then (aX,aY) fol-
lows SBE(X1/a,X2/a,X12/a) for a > 0.

This model may be extended easily to various bivariate
survival models using the transformations ofX and Y.
Marshall and Olkin (5) also consider the Weibull type
extension.

The Freund Model
Consider the process with four states, 0, A, B, AB:

0, both individuals 1 and 2 survive; A, only individual
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FIGURE 1. The transition probabilities between each two states.

1 fails; B, only individual 2 fails; AB, both individuals
1 and 2 fail. Assume the Markov property such that the
transition probability does not depend on time. The
transition probabilities between each two states are ex-
pressed in Figure 1.
The Markov property in the diagram leads to the

following joint density ofX and Y,

[a ,'exp{- 1't - (a + ,B- P')s}
fls,t) - forO < s < t

I a'1 expf- a's - (a + 1 - a')t}
for 0< t < s

Freund (6) proposed this model for bivariate exponen-
tial distribution and showed this model has the following
properties: The marginal densities are not exponential
distribution; X and Y are independent if and only if a
= a' and 1 = 1'; this distribution belongs to the ex-
ponential family. The dependence between X and Y is
essentially such that the failure of either individual 1 or
2 changes the hazard function of the other individual.
This model is extended by relaxing the Markov property
and the estimation of parameters involved in the model
are considered (7).

The Clayton Model
Clayton (8) considers the following function:

a2F(s,t)Fst
O(F(s,O),F(O,t)) =

at

aF(s,t)aF(s,t)
as at

This function is invariant under the monotone transfor-
mation ofX or Y. Supposing that O(s,t) does not depend
on s and t, Clayton (8) proposed 0 as a measure for
association for bivariate survival data. From this for-
mulation it follows that 0 is not less than 1; this model
does not depend on the marginal distributions; the sur-
vival function is given by
F(s,t) =

{F(s,O)1-9 + F(O,t)1-9 - 1}1/(1-e)
F(s,0) F(O,t)

if 0 > 1
ifO = 1

The conditional hazard function of X given * is defined
by

H(S I.=fls I)
F(s I.)

where fis ) and F(s * ) are density function and
survival function given, respectively. Then in terms
of the hazard function, this model may be represented
by

h(slY= t) = Oh(sl Y>t)

We call this model the Clayton model. The parameter
o is larger as dependence is stronger, so we can easily
understand the meaning of the parameter. The esti-
mations of the parameter 0 were investigated by Oakes
(9), Clayton and Cuzick (10), and others. This model is
attractive, but the assumption that 0(s,t) is constant
seems to be too strong in practice. The extension of this
model is considered in the next subsection.

The Mixture Model
Suppose that a pair of random variables (X,Y) has a

common unobservable random variable Z, called frailty.
Also suppose that given Z = z, X and Y are indepen-
dently distributed with hazard function zXl(s), zX2(t),
respectively. We call Xi(t) (i = 1,2) the baseline hazard
function. What is the meaning of the random variable
Z? In univariate case, the similar random variable Z
was introduced to represent a heterogeneous factor in
Swedish mortality data (11). When we deal with sur-
vival data, there are many situations where we cannot
suppose the homogeneity of the data, so we need to
introduce the heterogeneous factor in the probability
model. In the case of multivariate survival data, one
possible reason of dependence is due to the individuals
share of some heterogeneous factor. If this is the case,
Z indicates the common heterogeneous factor such as
genetic factors or environmental factors.
Gamma distribution family is used for the distribution

ofZ (11). Hugaard (12) also introduced three parameter
distribution family P(a,b,0) and investigated its prop-
erties. These properties are as follows.

a) The parameter space of this family is (0,1] x (0,oo)
x [O,oo) U {0} x (O,oo) x (O,oo). It is neither open
nor closed and is not a Cartesian product.

b) This family P(a,8,0) is wide. Because it includes
gamma distribution, stable distribution, and in-
verse Gaussian distribution.

c) The Laplace transform is

L(s) = exp [ - - { (0 + s)C -0 } ].

d) Let Z1,... , Zn, be independent Zi - P(ab8,0). The
distribution of X Zi is then P(a,lbj,0).

Supposing the distribution family P(a,b,0) for the com-
mon factor Z, it follows that the survival function of
(X,Y) is given by
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F(s,t) = exp[ - 8 {(A1(s) + A2(t) + 0)a - OG}ax]

where Ai(t) = Jfo Xi(u) du (i = 1,2).
Especially if we assume the gamma distribution of Z,
which is equivalent to suppose P(O,8,0), then the sur-
vival function is

F(s,t) = (F(s,0)1`8 + F(O,t)-`18 - 1)8 > O,
which is equivalent to Clayton model. This shows that
the mixture model is a wider family of distribution than
Clayton model, but we cannot easily understand the
meaning of the parameter (a,8,0).
The four models above have been generated in dif-

ferent situations, and it is important to choose the model
according to the type of data. Since the shock model
and Freund model use the idea of stochastic process,
we must suppose the pair of failure times are recorded
by a single clock from a common origin. These models
are available for life testing of two component system
or a person's paired organs. However, double clocks are
natural when we study the paired survival data such as
familial data and matched pair data. The Clayton model
and the mixture model can be applicable to the data on
the survival times that are recorded by separate two
clocks.

Test for Equality of Marginal
Distributions
Among the four models reviewed in the previous sec-

tion, the mixture model is frequently used in statistical
inference for the baseline hazard function. In this sec-
tion we consider the testing problem for a pair of sur-
vival data in the mixture model. Under the constant
baseline hazard assumption such that XA(t) = X, (i =
1,2), Salvia and Bollinger (1), Cantor and Knapp (2),
and Nayak (3) proposed the test for the equality of
marginal distributions by using the statistic T = X/Y.
The statistic T is not dependent on the distribution of
Z. Here we discuss the optimal C(a)-test proposed by
Fujii (4) under the Weibull type hazard assumption. T
is also useful in this case.

The Optimal C(a)-Test
If we suppose the following baseline hazard functions

are given by
Xi(t) = pit"" (i = 1,2)

then the conditional density function of (X,Y) given Z
= Z is given by

fl,y) = Z2(y + 1)212xyy
x exp{-z(Pjx'Y+1 + P2YY+I)}

We consider testing the hypothesis Ho:j = 1B2 versus
H1:1j # 132, treating y as a nuisance parameter. Like
the previous authors, we consider the statistic T = XI
Y. Under the above model, T has marginal density

(,y + 1)BP-
f) = -(1+ bt )+ 1)2' - 131/12

which does not depend on z. Furthermore, T is the
maximum invariant statistic with respect to Z. This
property of T holds if and only if the baseline hazard is
in the Weibull type.
We construct the optimal C(a)-test for the hypothe-

sis. When T1, T2, . . ., Tn are observed, we have the log
likelihood as follows
L(-y,8,ti) = nlog(-y + 1)8

n

+ y > log ti - 2log(1 + St""1).
i=l1

The efficient score with respect to 8 is
d L(y,8,t)

n
1 - tY+1

db tE l+tY+dn the Fion + ts

and the Fisher informnation matrix is

i(O) 3( 0 )

3(1 + y)
Then the optimal C(a)-test statistic is

n t 1 + t7+'4

where A is maximum likelihood estimator under the null
hypothesis. Since the likelihood function is concave, we
can easily calculate ' by the Newton iterative method.

The Power Comparison
We investigate the power property of the Nayak test,

sign test, and the optimal C(a)-test under Weibull type
hazard assumption. The Nayak test rejects the null hy-
pothesis if the statistic

1 n

u = - Tj/(1 + Ti)

is smaller than a constant. In the case of the Weibull
type hazard, it follows that statistic U asymptotically
follows nornal distribution. The mean and variance of
U is obtained as

,uO = E(U) = A(-y,8) - A(y,1/8) + 1/2
ncr2 = n Var(U) = 2A(y,b) 2B(y,1/8) - 2B(,yb)

+ 3/4 - W2
where

A(y,) Jo (1 + t)2 (1 + Sty+1) d

B(y, ) = (1 + t)3 (1 + t+1) dt.
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Table 1. Simulation result of power for Nayak test, sign test, and optimal C (a)-test.

=0.0 y = 0.2 _ _ = 0.4 'Y = 1.0
8 Nayak Sign C (a) Nayak Sign C (a) 8 Nayak Sign C (a) Nayak Sign C (a)
1.0 4.99 5.08 5.00 3.50 5.13 5.14 1.0 2.46 5.04 5.10 0.57 5.04 5.14
1.2 18.88 15.11 18.87 14.12 15.38 18.25 1.2 10.32 16.06 18.29 3.88 15.79 18.85
1.4 38.84 31.84 38.75 32.32 31.67 38.17 1.4 26.74 31.78 38.84 12.13 31.92 39.87
1.6 61.10 50.03 60.57 54.48 48.56 60.69 1.6 47.03 48.94 60.25 26.28 58.95 60.17
1.8 77.45 64.56 76.86 72.07 65.31 76.34 1.8 65.88 64.54 76.39 43.42 64.05 76.87
2.0 87.68 77.28 87.26 83.47 77.35 86.78 2.0 79.36 77.68 87.07 60.53 76.84 87.22

This shows that under the null hypothesis, the mean is
1/2 for any y, but the variance increases as y becomes
larger. Note that this test is one-sided.
We next consider the sign test. Let R = number of

i such that Ti S 1, then the signed test for Ho: 8 = 1
against H1 : 8 ¢ 1 is given by

1 ifR >C
4(T1,T2 ...ITn)= ifR = C

O ifR < C

where C and 0 are determined by the level of signifi-
cance a.

Table 1 shows the powers of the three tests at sample
size n = 50 obtained by a simulation. The simulation is
carried out by generating 10,000 uniform random digits
for each set of (-y,B). Note that because the Nayak test
is one-sided, we must correct the optimal C(a)-test to
one-sided test for comparison.
The table shows that the Nayak test is good at neigh-

borhood of y = 0, but it tends to be more inferior to
the other tests as -y becomes larger. Especially, the
Nayak test is not better than Sign test at -y = 1. On
the other hand the optimal C(a)-test is as good as the
Nayak test at -y = 0 but superior to the other tests for
y > 0. Note that its power is almost constant even if y
becomes large.
The author appreciates the suggestions and encouragement given

by T. Yanagawa.
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